
191

Chapter 11

Handling Strings

11.1 Length of a String

11.2 Joining Strings Together

11.3 Selecting Part of a String

11.4 Searching for a Pattern in a String

11.5 Substituting One Pattern for Another

11.6 Eliminating Characters from Strings

11.7 Bullet-Proofing Programs

11.8 Exercises

11.9 Technical Terms

192 Introduction to Programming in Turing

11.1 Length of a String

In this chapter we will look at ways that you can work with
strings. All the different operations that you need to perform can
be accomplished by two basic string operations: joining two
strings together and selecting a part of a string. As well, you need
to use the predefined function length to tell you the number of
characters in a string.

It is easy to find the length of any string stored in a variable
using the Turing predefined function length.

Here is a program that outputs the length of words.

% The "WordLengths" program
% Read words and find their length
put "Enter one word to line, end with 'end' "
var word : string
loop

put "Enter word: " ..
get word
exit when word = "end"
put word, " has ", length (word), " letters"

end loop

Here is a sample Execution window.

Enter one word to line, end with 'end'

Enter word banana

banana has 6 letters

Enter word kangaroo

kangaroo has 8 letters

Enter word end

Chapter 11 : Handling Strings 193

11.2 Joining Strings Together

The operation of joining strings together is called catenation
and is accomplished using the operator +. When this operator is
between two numbers it means that they are to be added. When
the + operator is between two strings it means they are to be
joined. Here is an example.

put "O" + "K"

It produces the output OK; the two strings are joined.
Here is a program that reads five words and joins them into a

line of output.

% The "WordsOnLine" program
% Reads 5 words and outputs all on a line
var word : string
var line := "" % Initialize line to the empty string
put "Enter 5 words"
for i : 1 .. 5

get word
line := line + word + " "

end for
put line

Here is a sample Execution window.

Enter 5 words

Why am I entering this many words

Why am I entering this

If the words were entered one to a line the output would be given
right after you enter the 5th word and the window would look like
this

Why

am

I

entering

194 Introduction to Programming in Turing

this

Why am I entering this

Notice that in the declaration of the string variable line it is
initialized to the empty string. In the for loop the most recently
read word is catenated onto the line and a blank is catenated on
to that; the result is stored in the variable line. If the blank were
not catenated the output would be

WhyamIenteringthis

11.3 Selecting Part of a String

A part of a string is called a substring. We define a substring
by placing in parentheses after the name of the string: the
position of the first character in the substring, then two dots,
followed by the position of the last character in the substring. The
character positions of a string are numbered starting on the left
from 1 to the length of the string. The output for this program

const word := "magnet"
put word (4 .. 6)

would be net. The substring net consists of the 4th to the 6th
characters of magnet.

If the substring goes from some position to the end of the
string then the last position can be written as an asterisk. So the
program we just had would give the same result if the put
statement were

put word (4 .. *)

Here is a program to read a series of words and output the
last three characters of each word until the word quit is read.

% The "FinalThreeLetters" program
% Read words and if possible give last three characters
var word : string

Chapter 11 : Handling Strings 195

put "Enter words one to a line, end with 'quit' "
loop

put "Enter word: " ..
get word
exit when word = "quit"
if length (word) >= 3 then

put word (* – 2 .. *)
else

put "Word has fewer than 3 characters"
end if

end loop

Notice that the third last character can be given as * – 2 in the
substring specification.

You must not ask for a character position that is not present,
for example, a character position whose number is less than 1 or
greater than the length of the word or an execution time error will
result. In general, the first character position’s value must be
between 1 and the last character position’s value inclusive. In the
particular case where it is one greater than the last character
position the result is an empty string. For example, word (length
(word)+ 1 .. *) gives the empty string.

Here is a sample Execution window for the FinalThreeLetters
program.

Enter words one to a line, end with 'quit'

Enter word speaking

ing

Enter word softly

tly

Enter word to

Word has fewer than 3 characters

Enter word quit

If we had not tested in the if statement to see if the word was
at least 3 characters long and had asked for the last three
characters of to we would have been told of an execution error.
You should try this program and see what you get

const word := "to"

196 Introduction to Programming in Turing

put word (* – 2 .. *)

There will be an execution error because * – 2 attempts to locate
a character before the first character.

If the substring is to be a single character you can just put that
character’s position in parentheses; a range is not required.

Here is a program that outputs each letter of a word on a
separate line.

% The "LetterAtATime" program
% Read a word and output it a letter-at-a-time
var word : string
put "Enter words, end with 'tired' "
loop

put "Enter word: " ..
get word
exit when word = "tired"
for i : 1 .. length (word)

put word (i)
end for

end loop
put "Why not take a rest?"

Here is a sample Execution window.

Enter words, end with 'tired'

Enter word sick

s

i

c

k

Enter word tired

Why not take a rest?

Chapter 11 : Handling Strings 197

11.4 Searching for a Pattern in a String

We have seen several examples where we recognized a word
such as stop or quit that we have read. We also need to be able
to recognize if a certain pattern of characters is in a string or not.
For example, we might want to look for words containing the
pattern ÒieÓ. To do this we use the predefined Turing function
index whose value is the character position where a pattern first
matches a string. The value of

index (string, pattern)

is the first position from the left in string where the pattern
matches. For example,

index ("getting", "t")

has a value 3. There is a second occurrence of t in getting at
position 4. The value of

index ("dandelion", "lion")

is 6. If there is no match at all the value of index is zero.
Here is a program to detect words that contain the letter s.

% The "HaveAnS" program
% Test to see if a word contains an "s"
var word : string
put "Enter a series of words, end with 'last' "
loop

put "Enter word: " ..
get word
exit when word = "last"
if index (word, "s") not= 0 then

put word, " contains an 's' "
else

put word, " does not contain an 's' "
end if

end loop

198 Introduction to Programming in Turing

Here is a similar program to see if a word contains two
occurrences of a pattern. It is a more difficult process. This time
the program will ask you to enter the pattern you want to test for.

% The "DoublePattern" program
% Test to see if a word has two occurrences of a pattern
var word, pattern : string
put "Enter the pattern you want to test for: " ..
get pattern
const size := length (pattern)
put "Enter a series of words"
put "Enter 'finis' to stop"
loop

get word
exit when word = "finis"
const place := index (word, pattern)
if place = 0 then

put word, " contains no occurrences of ", pattern
elsif index (word (place + size .. *), pattern) = 0 then

put word, " contains one occurrence of ", pattern
else

put word, " contains at least two occurrences of ", pattern
end if

end loop

In this program if you find that the word contains one
occurrence of the pattern then you must see if there is a second
occurrence. The second search for the pattern must be in the
substring of word starting after the end of the first occurrence and
going to the end.

To see whether or not you have the correct expressions for
the conditions try working through a test case or two on paper
rather than on the computer. For example, suppose the pattern is
ÒsÓ and the word is ÒwallsÓ. The value of size is 1 and place is
5. The value of place + size is 6. The value of the substring word
(place + size .. *) will be the empty string which is what you get if
the value of the beginning of the substring range is one greater
than the length of the string which is 5. Now try the word
ÒglassÓ. The value of place will be 4 and place + size will be 5.

Chapter 11 : Handling Strings 199

The substring word (place+size .. *) is then really word (5 .. 5)
which is just the last character.

11.4.1 Counting Patterns in a Word

The previous program shows how to count the patterns in a
word. If the word is ÒbananaÓ and the pattern is ÒaÓ then the
program will tell you that there are at least two occurrences of
ÒaÓ in ÒbananaÓ. It is also possible to modify the program so
that the exact count will be outputt.

Here is the revised program that inputs the pattern and
outputs the count.

% The "DoublePattern2" program.
var pos, count, size : int
count := 0
var word, pattern : string
put "Enter the pattern that you want to search for: " ..
get pattern
put "Enter the word you want to search through: " ..
get word
size := length (pattern)
loop

pos := index (word, pattern)
exit when pos = 0
count := count + 1
word := word (pos + size .. *)

end loop
put "The number of occurrences: ", count

You can see how count changes by tracing through the program.
The following trace shows how the DoublePattern2 program runs
when pattern is set to ÒaÓ and word is set to ÒbananaÓ.

count=0
size=1
first time through loop

pos=2
count=1

200 Introduction to Programming in Turing

word=nana
second time through loop

pos=2
count=2
word=na

third time through loop
pos=2
count=3
word=""

fourth time through loop
pos=0

loop exited and the count of 3 is output

11.5 Substituting One Pattern for Another

We showed examples where we looked for a pattern in a
word. We could have substituted a different pattern after we
found the one we were searching for. This would then be a
search and substitute process. For example, in the program
HaveAnS, in the previous section we could have substituted
another letter such as ÒtÓ for the ÒsÓ.

In Turing, you cannot assign to a substring. In order to change
part of a string, you must rebuild the string. For example, to
change the letter ÒsÓ to ÒtÓ in a string, you would create a new
string by concatenating the part of the string up to (but not
including) the ÒsÓ with the ÒtÓ and then concatenating the
result with the part of the string from just past the ÒsÓ to the end
of the string.

Here is the assignment statement that would do it. Place this
statement after the put in the then clause

word := word (1 .. index (word, "s") – 1) + "t" +
word (index (word, "s") + 1 .. *)

The new word is made up of three pieces catenated. The first
piece is the substring of the original word up to the position of the
pattern. Next comes the substituted letter ÒtÓ, then the substring

Chapter 11 : Handling Strings 201

of the original word starting after the pattern and going to the end.
If the pattern is already at the end of the word this last substring
will be a empty string.

Sometimes in programs the same function is evaluated
several times. It is often more efficient to assign its value to a
variable, then use the variable instead of reevaluating the
function. For example, in the twice program we assigned to the
variable place the value of index (word, pattern).

11.6 Eliminating Characters from Strings

Sometimes it is useful to be able to eliminate a certain class of
characters from a string. Here is a program which removes all the
vowels from a word.

% The "RemoveVowels" program
% Eliminates the vowels from a word
var word : string
put "Enter a series of words, end with '*' "
const vowels := "aeiou"
loop

get word
exit when word = "*"
var newWord := "" % empty string
for i : 1 .. length (word)

if index (vowels, word (i)) = 0 then
% Letter is not a vowel
newWord := newWord + word (i)

end if
end for
put "Word without vowels ", newWord

end loop

In the for loop each letter of word, namely word (i), is tested
as the pattern against the string of vowels. If it is found in the

202 Introduction to Programming in Turing

string of vowels the index function will not be zero and we do not
catenate it onto the new word we are forming.

Here is a sample Execution window with the keyboard input in
bold.

Enter a series of words, end with '*'

jump

Word without vowels jmp

diagonal

Word without vowels dgnl

*

We can also remove a pattern from within a string using word
by

word := word (1 .. pos – 1) + word (pos + size .. *)

where pos is the position of the pattern in the string and size is
the size of the pattern. This redefines word so that it contained
the part of the word before the pattern (word (1 .. pos – 1)) and
the part of the word after the pattern (word (pos + size .. *)).

Here is a modification of the DoublePattern2 program that
outputs the string with all occurrences of a pattern removed.

% The "DeletePattern" program.
var pos, size : int
var word, pattern : string
put "Enter the pattern that you want to search for: " ..
get pattern
put "Enter the word you want to search through: " ..
get word
size := length (pattern)
loop

pos := index (word, pattern)
exit when pos = 0
word := word (1 .. pos – 1) + word (pos + size .. *)

end loop
put "Here is the word with the pattern removed: ", word

Chapter 11 : Handling Strings 203

11.7 Bullet-Proofing Programs

Another important consideration when designing programs is
making sure that the user cannot crash the program by entering
unexpected data. This is called Òbullet-proofingÓ your program.
The most common kind of error that can occur is if the user
enters a letter of the alphabet as input when asked for a number.
When this happens, Turing is unable to read the input as a
number and the program stops execution and outputs an error
message. It creates a run-time error.

Reading all input as strings avoids this problem. The string is
converted to an integer or real only after making certain that the
string contains valid input. If the string does not contain valid
input, the program can ask the user to reenter a proper value.

Here is an example of a program segment that gets an integer
value from the user.

var input : string
var age : int
put "Enter your age: " ..
loop

get input
exit when strintok (input)
put "Not a number. Please enter an integer: " ..

end loop
age := strint (input)

The program prompts the user for input and then enters the loop.
In the loop, the user inputs their age into the string variable input.
The program then checks whether input can be converted to an
integer. The strintok (pronounced strint-okay) built-in subprogram
examines input and returns true if input can be converted to an
integer and false otherwise. If input cannot be converted to an
integer, the program outputs an error message and loops back,
asking for the another input. If the user enters valid input the
program leaves the loop. The string is then converted into an
integer using the strint function.

204 Introduction to Programming in Turing

A similar program segment for reading in a real number can
be created using the strrealok and strreal perdefined subprograms.

11.8 Exercises

1. Write a program to count the total number of characters in a
series of 10 words that you enter, and compute the average
word length.

2. Write a program to output the first and last letters of a series
of words. A sample Execution window might be:

Enter a series of words one to a line, end with

'wow'

Enter word pig

pg

Enter word dog

dg

Enter word a

Word has only 1 character

Enter word wow

3. Write a program which produces a line of asterisks of a given
length by catenating enough single asterisks in a for loop.
Here is a sample Execution window:

Enter a negative number to stop

How many asterisks do you want? 8

How many asterisks do you want? 5

How many asterisks do you want? –1

The repeat predefined function can be used to do this too. For
example,

put repeat ("*", 5)

Chapter 11 : Handling Strings 205

will result in the output *****. Patterns of more than one
character can be repeated also, for example, repeat ("Hi", 3)
produces three ÒHiÓs.

4. Rewrite the program of question 3 so that the pattern to be
repeated by catenation is read into the computer. Try several
patterns.

5. Write a program to change words made up of lower case
letters into a secret code. The letter a is to be changed to b, b
to c, and so on; z becomes a. To do this you must know a little
about the ASCII code shown in the appendix. The predefined
function ord has a value equal to the ASCII code of the letter
which is its parameter. For example, ord ("a") has the value 97
which is the ASCII equivalent of the letter a. The letter b has
the code 98. The predefined function chr can translate back
from a value to a letter. For example, the function chr (97) has
a value the character a. To change an a to a b you would use
both functions, one after the other. The value of

chr (ord ("a") + 1)

is b. In this way you can convert to the secret code. Try your
luck at this.

6. Write a program to read a series of words from the keyboard
and output the reverse word with the letters backward. Keep
all the letters of the word in the same case: upper or lower.
Here is a sample window.

Enter a word COW

The reverse word is WOC

Enter a word madam

The reverse word is madam

(etc.)

If the reverse word is the same as the word, the word is a
palindrome. If you find this to be the case output a line saying

This is a palindrome

7. Read a series of words and output the middle letter of each
word that has an odd number of letters or announce that the

206 Introduction to Programming in Turing

word has an even number of letters. Here is a sample
Execution window:

Enter word brine

The middle letter is i

Enter word bright

The word has an even number of letters

(etc.)

Use the end-of-file signal to stop the repetition. Try putting the
input on a disk file called list and redirect the input to be from
it. Does your output look the same as before? How could you
change your program so that you see the word that is read.

8. Write a program which gives the user this menu.
Menu

1. Count a pattern

2. Eliminate a pattern

3. Substitute a pattern

4. Exit

If the user chooses #1 - ask for a word and a single letter
pattern. Display the number of times the pattern occurs in the
word. (banana, a, 3)
If the user chooses #2 - ask for a word and a single letter
pattern. Display the word without the pattern (banana, a, bnn)
If the user chooses #3 - ask for a word, a single letter search
pattern and a single letter replacement pattern. Display the
word with the alterations. (banana, a, o, bonono)
If the user chooses #4 - quit the program
Use getch and clear the Execution window between options.

9. Modify alternative 3 in Exercise 8 so that it properly handles
the case of replacing each o in moon by oo.

10. Using the RemoveVowels program as your guide, write a
program which inputs a string and then outputs each
character in the string and whether or not the character is a
vowel, a consonant, a number or any other character. For
example if Ò5te+Ó were input, then the output should be:

5 is a number

Chapter 11 : Handling Strings 207

t is a consonant

e is a vowel

+ is any other character

11.Modify Exercise 10 so that it outputs the vowels, consonants,
numbers, and other characters as words. For example if
Òasdfert456u2~1?Ó were input then the output would be:

numbers - 45621

vowels - aeu

consonants - sdfrt

any other character - ~?

12. Use your ingenuity to come up with a different way of finding
out whether or not a word is a palindrome.

13.Write a program that inputs a word, a letter, and a
replacement letter. If the first letter exists in the word, all
occurrences of it should be replaced by the replacement letter
and the new ÒwordÓ printed . If the letter does not exist in the
word, the message Òno replacement neededÓ should be
printed. For example:

Enter a word: program

Enter a letter: r

Enter replacement letter: l

New “word” is plogram.

14.Repeat Exercise 8 but use patterns of more than 1 letter
(replace a pattern of letters in a word with another pattern of
letters).

208 Introduction to Programming in Turing

11.9 Technical Terms

length of string

catenation

substring

range of substring

index function

searching for pattern

substitution of one string
by another

deletion of characters

insertion of characters

repeat function

ord function

chr function

palindrome

